Global pointwise estimates for Green's matrix of second order elliptic systems
نویسندگان
چکیده
منابع مشابه
Global Estimates for Mixed Methods for Second Order Elliptic Equations
Global error estimates in L2(Q), L°°(Q), and H~S(Q), Q in R2 or R3, are derived for a mixed finite element method for the Dirichlet problem for the elliptic operator Lp = -div(a grad p + bp) + cp based on the Raviart-Thomas-Nedelec space V^ X Wh c H(div; Í2) X L2(ü). Optimal order estimates are obtained for the approximation of p and the associated velocity field u = -(a grad p + bp) in L2(fl) ...
متن کاملPointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem
In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in RN (N ≥ 2). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the L2 norm except for a logarithmic factor when the piecewise linear functions are u...
متن کاملLocalized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems
Two types of pointwise a posteriori error estimates are presented for gradients of finite element approximations of second-order quasilinear elliptic Dirichlet boundary value problems over convex polyhedral domains Ω in space dimension n ≥ 2. We first give a residual estimator which is equivalent to ‖∇(u − uh)‖L∞(Ω) up to higher-order terms. The second type of residual estimator is designed to ...
متن کاملBoundary Estimates for Positive Solutions to Second Order Elliptic Equations
Consider positive solutions to second order elliptic equations with measurable coefficients in a bounded domain, which vanish on a portion of the boundary. We give simple necessary and sufficient geometric conditions on the domain, which guarantee the Hopf-Oleinik type estimates and the boundary Lipschitz estimates for solutions. These conditions are sharp even for harmonic functions.
متن کاملQuantitative uniqueness estimates for the general second order elliptic equations
In this paper we study quantitative uniqueness estimates of solutions to general second order elliptic equations with magnetic and electric potentials. We derive lower bounds of decay rate at infinity for any nontrivial solution under some general assumptions. The lower bounds depend on asymptotic behaviors of magnetic and electric potentials. The proof is carried out by the Carleman method and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2010
ISSN: 0022-0396
DOI: 10.1016/j.jde.2010.05.017